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is increased until the next constructive interference is achieved, 
the change in frequency, ~f, is given by 

4nL ~f + ~~ = 2n 
v r 

(2) 

where ~~r is the accompanying change in ~ . Thus, if ~~ is known 
or can be neglected, the velocity, v , canrbe determined 5y meas
uring ~f; ~f can be determined by directly measuring the frequen
cies at successive peaks and troughs [Spetzler, 1970], but their 
positions may be affected by the amplitude envelope and by noise. 
Instead, the phase of the sinusoid in Figure 3(a) was calculated 
continuously as a function of carrier frequency [O'Connell et al., 
in preparation]. The phase of this sinusoid is directly related 
to the phase difference between superposed echoes in the sample; 
thus pressure derivatives can also be determined by measuring the 
phase as a function of pressure. 

The first step in calculating the phase is to filter out the 
amplitude envelope and any harmonics and noise from the data. 
This is done via the spectrum (Figure 3b) of the data calculated 
by the Fast Fourier Transform (FFT) algorithm, and t he result is 
illustrated in Figure 3(c). The filtered data are phase shifted 
by 90°, via a Hilbert transform in the frequency domain, and the 
"instantaneous" phase is then given by the inverse tangent of the 
ratio of the transformed to the original filtered data. The pro
cess is described in more detail by O'Connell et al. [in prepara
tion]. The calculated variation of phase with carrier frequency 
is illustrated in Figure 3(d), and residuals from a best-fit 
straight line are shown in Figure 3(e) . If reflection phase 
shifts in the sample could be neglected, the slope of this line 
would be a measure of the sound velocity in the sample. Small 
systematic deviations from linearity can be seen in Figure 3(e), 
which are interpreted below as arising from reflection phase 
shifts in the sample. 

IV. TRANSDUCER-BOND PHASE SHIFTS 

A sound wave reflected from a sample face to which a trans
ducer is bonded is actually the superposition of waves reflected 
from three faces: the sample-bond and bond-transducer interfaces 
and the outer face of the transducer. The phase and amplitude of 
the resultant wave depend in a complicated way on the thickness 
and relative acoustic properties of the bond, transducer, and 
sample. This dependence, for the case of plane, parallel waves 
and interfaces, has been given by Redwood and Lamb [1956], who 
used the analogous theory of transmission lines [see also 
McSkimin, 1957; Williams and Lamb, 1958]; identical results can be 
obtained by considering plane elastic waves directly. The total 
transducer phase shift is 
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(3) 

where 

(4a) 

(4b) 

and 

Zt 
tan D

t 
= -- tan at 

Zf 
(5) 

Here, Z , Zt' and Z£ are the acoustic impedance of the sample 
transduger, and bona ("film"), respectively, and a is the thick
ness, in terms of the phase of the sound wave, of the transducer 
or bond 

a = kl 21Tl/ A = 21Tlf/ v (6) 

where k is the wave number, A is the wavelength, and 1 is the 
thickness. Subscript t or f in (6) would indicate transducer or 
bond properties, respectively. The acoustic impedance, Z, of a 
medium is the product of the density, p , and sound velocity, v , 
of the medium 

Z = pv (7) 

The total reflection phase shift, a , between successive 
echoes in the sample is the sum of (3) a~d a phase shift of 1T 
occurring on reflection at the other end of the sample. An ex
ample of calculated phase shifts as a function of carrier frequen
cy is illustrated in Figure 4 for the case of a 10 Mhz quartz 
p-transducer (X-cut) bonded to a (100) face of MgF2. The relevant 
acoustical properties are listed in Table 2, along with those of 
other materials discussed in this paper. Different bond thick
nesses are represented by the parameter 

T = 
f 

(8) 

which is the transit time (in nsec) of the wave through the bond. 
Wave velocities in typical bond materials are 1 to 2 km/ sec. For 
v

f 
= 1 km/sec, Tf is the bond thickness in ~. 

For zero bond thickness, the phase shift is symmetrical about 
multiples of the transducer resonance frequency (in this case, the 
third), and equation (4) simplifies to 


